| Q1.E | sters | are  | used as raw m                                       | aterials in the production of soaps and biodiesel.                                             |     |
|------|-------|------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|-----|
|      | (a)   | Α    | student prepared an ester by two different methods. |                                                                                                |     |
|      |       |      | Method 1                                            | alcohol + acid anhydride                                                                       |     |
|      |       |      | Method 2                                            | alcohol + acyl chloride                                                                        |     |
|      |       | (i)  | An ester wa<br>(CH <sub>3</sub> CO) <sub>2</sub> O  | is prepared using method <b>1</b> , by reacting (CH <sub>3</sub> ) <sub>2</sub> CHOH with      |     |
|      |       |      | Write an eq formed.                                 | uation for this reaction and give the IUPAC name of the ester                                  |     |
|      |       |      | Equation                                            |                                                                                                |     |
|      |       |      |                                                     |                                                                                                |     |
|      |       |      | IUPAC nam                                           | ne of the ester                                                                                | (2) |
|      |       | (ii) | The same e<br>CH₃COCl                               | ester was prepared using method <b>2</b> by reacting (CH <sub>3</sub> ) <sub>2</sub> CHOH with | ,   |
|      |       |      | Outline a m                                         | echanism for this reaction.                                                                    |     |
|      |       |      |                                                     |                                                                                                |     |
|      |       |      |                                                     |                                                                                                |     |

(4)

(b) The ester shown occurs in vegetable oils.

|      |                   |                 | CH <sub>2</sub> OOCC <sub>17</sub> H <sub>31</sub><br>CHOOCC <sub>17</sub> H <sub>33</sub><br>CH <sub>2</sub> OOCC <sub>17</sub> H <sub>29</sub>                                       |          |
|------|-------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                   | (i)             | Write an equation for the reaction of this ester with sodium hydroxide to form soap.                                                                                                   |          |
|      |                   |                 | CH <sub>2</sub> OOCC <sub>17</sub> H <sub>31</sub><br>CHOOCC <sub>17</sub> H <sub>33</sub><br>CH <sub>2</sub> OOCC <sub>17</sub> H <sub>29</sub>                                       |          |
|      |                   |                 |                                                                                                                                                                                        | 2)       |
|      |                   | (ii)            | Give the formula of the biodiesel molecule with the highest $M_r$ that can be produced by reaction of this ester with methanol.                                                        |          |
|      |                   |                 | (Total 9 marks                                                                                                                                                                         | 1)<br>s) |
|      |                   |                 |                                                                                                                                                                                        |          |
| Q2.N | -                 | -               | namide is used as an inhibitor in hydrogen peroxide decomposition and also in tion of dyes.                                                                                            |          |
|      |                   |                 | hanamide can be produced in a laboratory by the reaction between nonium sulfate and an excess of ethanoic anhydride:                                                                   |          |
|      | (a)               |                 | ident carried out this preparation using 1.15 g of phenylammonium sulfate ( $M_r$ = 1) and excess ethanoic anhydride.                                                                  |          |
|      | (C <sub>8</sub> H | NH <sub>3</sub> | $)_2$ SO <sub>4</sub> + 2(CH <sub>3</sub> CO) <sub>2</sub> O $\rightarrow$ 2C <sub>6</sub> H <sub>5</sub> NHCOCH <sub>3</sub> + 2CH <sub>3</sub> COOH + H <sub>2</sub> SO <sub>4</sub> |          |
|      |                   | (i)             | Calculate the maximum theoretical yield of N-phenylethanamide that could be produced in the reaction. Record your answer to an appropriate precision.                                  |          |
|      |                   |                 | Show your working.                                                                                                                                                                     |          |
|      |                   |                 |                                                                                                                                                                                        |          |
|      |                   |                 |                                                                                                                                                                                        |          |
|      |                   |                 |                                                                                                                                                                                        |          |

It can be hydrolysed to make soap and can also be used to produce biodiesel.

|                                                                            | (                                                                                                                        |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                            | '                                                                                                                        |
|                                                                            |                                                                                                                          |
| In the preparation, the student produced 0.89 g of N-phenylethanamide.     |                                                                                                                          |
| Calculate the percentage yield for the reaction.                           |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            | (                                                                                                                        |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
| Outline the method that the student should use for this recrystallisation. |                                                                                                                          |
| Outline the method that the student should use for this recrystallisation. |                                                                                                                          |
| Outline the method that the student should use for this recrystallisation. |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            |                                                                                                                          |
|                                                                            | In the preparation, the student produced 0.89 g of N-phenylethanamide.  Calculate the percentage yield for the reaction. |

|     |       |                                                                                                                                     | (3)           |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |       |                                                                                                                                     | ( )           |
|     |       |                                                                                                                                     |               |
|     | (iii) | Assume that the reaction goes to completion.                                                                                        |               |
|     |       | Suggest <b>two</b> practical reasons why the percentage yield for this reaction may <b>not</b> be 100%.                             |               |
|     |       | 1                                                                                                                                   |               |
|     |       |                                                                                                                                     |               |
|     |       | 2                                                                                                                                   |               |
|     |       |                                                                                                                                     | (2)           |
|     |       |                                                                                                                                     |               |
| (c) |       | reaction to form N-phenylethanamide would happen much more quickly if the ent used ethanoyl chloride instead of ethanoic anhydride. |               |
|     |       | ain why the student might prefer to use ethanoic anhydride, even though it has ower rate of reaction.                               |               |
|     |       |                                                                                                                                     |               |
|     |       |                                                                                                                                     |               |
|     |       | (Total 15 m                                                                                                                         | (2)<br>narks) |
|     |       |                                                                                                                                     |               |

**Q3.**1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in the following

figure.

(a) A suitable reagent for step 1 is CH<sub>3</sub>COCI

Name and draw a mechanism for the reaction in step 1.

Name of mechanism .....

Mechanism

(5)

(b) The product of step 1 was purified by recrystallisation as follows.

The crude product was dissolved in **the minimum quantity of hot water** and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was **left to cool to room temperature**. The crystals formed were filtered off using a Buchner funnel and a clean cork was used **to compress the crystals in the funnel.** A **little cold water was then** 

## poured through the crystals.

After a few minutes, the crystals were removed from the funnel and weighed. A small sample was then used to find the melting point.

| Give reasons for each of the following practical steps.                        |
|--------------------------------------------------------------------------------|
| The minimum quantity of hot water was used                                     |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
| The flask was cooled to room temperature before the crystals were filtered off |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
| The constal constant of the formal                                             |
| The crystals were compressed in the funnel                                     |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
| A little cold water was poured through the crystals                            |
| ,                                                                              |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |

(c) The melting point of the sample in part (b) was found to be slightly lower than a data-book value.

(4)

| the method so that a more accurate value for the melting point would be obt |  |
|-----------------------------------------------------------------------------|--|
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |
|                                                                             |  |

(2)

The figure above is repeated here to help you answer the following questions.

(d) In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified product were obtained in step 1.

Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures.

| (3)                 | Percentage yield =%                                                                                                                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (e) A reagent for step <b>2</b> is a mixture of concentrated nitric acid and concentrated sulfuric acid, which react together to form a reactive intermediate. |
|                     | Write an equation for the reaction of this intermediate in step 2.                                                                                             |
|                     |                                                                                                                                                                |
|                     |                                                                                                                                                                |
| (1)                 |                                                                                                                                                                |
|                     | f) Name a mechanism for the reaction in step <b>2</b> .                                                                                                        |
| (1)                 |                                                                                                                                                                |
|                     | g) Suggest the type of reaction occurring in step <b>3</b> .                                                                                                   |
| (1)                 |                                                                                                                                                                |
|                     | (h) Identify the reagents used in step <b>4</b> .                                                                                                              |
| (1)<br>al 18 marks) | (Total                                                                                                                                                         |